Вход

100% природная нефть

если V (рез) = = 20 000 м. куб.

как уменьшить потери в транзитном нефтяном резервуаре

Выход

V(нефть) – V (шлам)

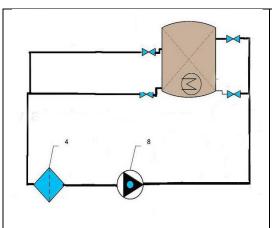
то V (шлама) = = 1000 м. куб. в год <mark>или (4-5%</mark>

от номинального объема резервуара)

Потери с одного транзитного нефтяного резервуара в год =

- = <u>шлам</u> (4-5% от объема танка = потеря товарной продукции) +
- + стоимость его удаления + стоимость его утилизации +
- + стоимость простоя резервуара

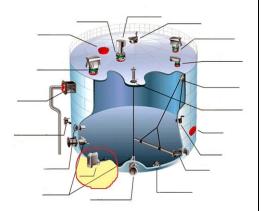
шлам состоит из компонентов природной нефти: вода, парафин, тяжелые нефтяные фракции, механические примеси.


Только потери на шлам в малом транзитном нефтяном терминале

(20 резервуаров по 20,000 м. куб.) составляют в год = $\frac{20,000.00 \text{ м. куб.}}{20,000.00 \text{ м. куб.}}$ природной нефти или \$8 400 000.00

как вернуть накопленный шлам в состав природной нефти? как уменьшить потери товарной продукции и снизить затраты на удаление и утилизацию шлама?

Сегодня мы знаем два стандартных пути решения этой проблемы



1. <u>Постоянное перемешивание</u> нефти с помощью рециркуляционного насоса.

Этот процесс только ускоряет сгущение и выпадение в осадок малых механических частиц и воды, которые накапливаются в «мертвых зонах» резервуаров и формируют более прочные отложения, чем раньше.

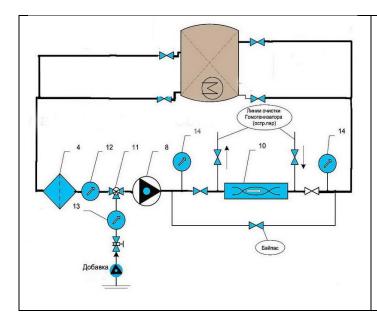
Если рециркуляционный насос высокопроизводительный или «мертвые зоны» отсутствуют частицы и вода выпадают в трубопроводах или других резервуарах.

Этот процесс обычно требует большого количества диспергирующих или стабилизирующих присадок и должен поддерживаться постоянно.

2. Интенсивное смешивание погруженном винтом

(например установка «Тайфун») с собственным электродвигателем. Некоторые люди говорят, что это разрушает донные отложения.

Этот процесс более интенсивный и более целенаправленный. Этот процесс разрушает большие и средние частицы и скопления (особенно в направлении струи, но не может разрушить мелкие частицы, что приводит к слипанию мелких частиц, которые выпадают в «мертвых зонах» резервуара и образуют более прочный осадок, чем раньше.


Этот процесс требует больше энергии, он плохо работает в средних и больших резервуарах, требует меньше моющих и диспергирующих присадок и должен выполняться непрерывно. Работает только для продуктов с низкой вязкостью.

Перемешивание, даже интенсивное, не изменяет размер мелких частиц. Таким образом, когда эти системы отключены, нефть продолжает оседать. В резервуаре или в трубе.

Без использования присадок - быстро. С использованием присадок – медленно.

Оба этих метода – **только перемешивание**. Они не предназначены для эмульгирования и измельчения суспензии - диспергирования механических примесей и изменения фракционного состава нефтепродукта. Интенсивное перемешивание кофе никогда не

Наша идея проста - вернуть все накопленные нефтяные компоненты обратно, в состав природной нефти. Возвращать постоянно или периодически, при чистке резервуара.

Это уменьшит потери нефти, как товарного продукта, значительно снизит скорость образования осадка и количество шлама, снизит стоимость физического удаления и утилизации этих осадков.

Правильное построение системы обработки нефти, на основе механических диспергаторов TRGA, будет эффективно измельчать все включения в нефть. Как по составу - смолы, парафины, асфальтены, частицы кокса. Так и по размеру - большие, средние и маленькие, до размеров 5-100 микрон, в зависимости от опций.

В то же время происходит еще несколько полезных параллельных процессов.

- 1. Эмульгирование остатков воды.
- 2. Увеличение легких фракций в нефти (увеличивает скорость растворения остатков).
- 3. Кавитационные пузырьки, работают как катализатор растворения нефтяного шлама.

Это означает, что

- 1. наша система будет работать и без использования добавок.
- 2. Если вы используете добавки, вы можете использовать их меньше. Если вы используете такое же количество добавок процесс идет в несколько раз быстрее. Больше здесь.
- 3. Когда наши системы отключены, нефть, некоторое время, НЕ оседает. Затем начинает оседать, без использования присадок медленно, с присадками очень медленно.

Вывод:

- 1. Потери с одного транзитного нефтяного резервуара в год =
- = <u>шлам</u> (<mark>4-5%</mark> от его оъема = потеря товарной продукции) + **стоимость его удаления**
- + стоимость его утилизации + стоимость простоя резервуара.

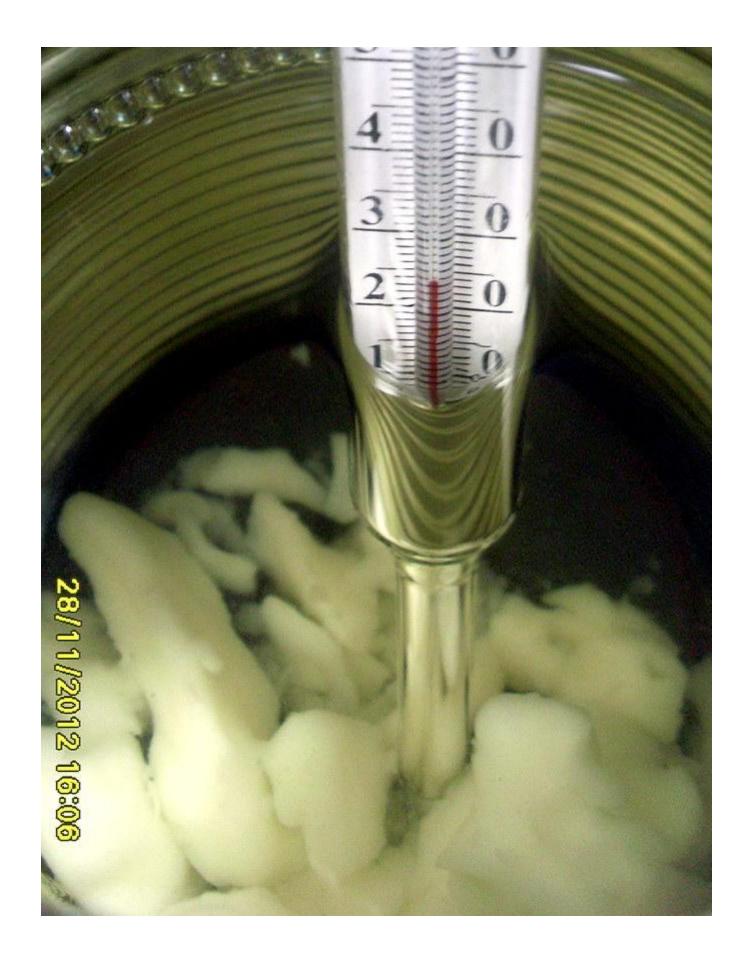
2. Только потери на шлам в малом транзитном нефтяном терминале

(20 резервуаров по 20,000 м. куб.) составляют в год =

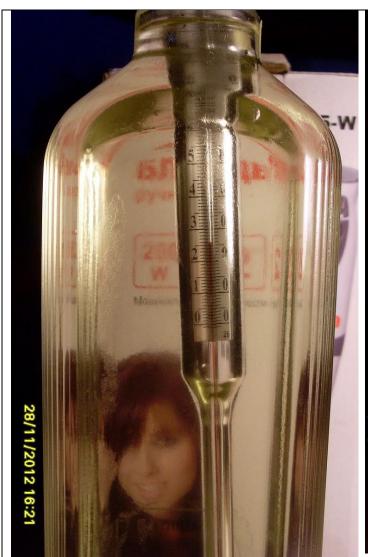
- = <mark>20,000.00 м. куб.</mark> природной нефти или \$<mark>8 400 000.00</mark> + **стоимость его удаления**
- + стоимость его утилизации + стоимость простоя резервуаров.
- 3. Мы показали вам, как уменьшить эти затраты, если <u>вернуть все компоненты</u> природной нефти (которые временно находятся в форме осадка) <mark>обратно в сырую нефть</mark>.
- 4. Правда заключается в том, что серия дезинтеграторов TRGA имеет практический опыт успешной работы с нефтяным шламом в течение 3 лет непрерывно и без ремонта. Вместе с вами мы можем построить индивидуальный проект для любого нефтяного терминала. Он окупается быстро

6. **Возможны два типа оборудования** - мощная «аварийная» система для размывания существующих отложений. И маломощная система, для непрерывной работы - для предотвращения образования отложений.

7. Немного доказательств...


7.1. Визуальные доказательства.

Это тест от 2012 года, демонстрация возможности интенсифицировать растворения пальмового масла в керосине. Выше – вид пальмового масла в керосине при температуре 15 и 20 градусов Цельсия. Ниже характеристики плавления.


Виды продуктов пальмового масла	Скользящая точка плавления (SMP)	Иодное число	Содержание твёрдых жиров при 20°C
Пальмовое масло (РО)	33—39 °C	5 0—55	26 %
Пальмовый олеин (Роо)	19—24 °C	56—62	0—9 %
Пальмовый стеарин (PS или POs)	47—54 °C	28-45	25—71 %

Продолжим увеличивать температуру керосина ...

Вид при 25 градусах Цельсия. Затем пропустим смесь через гомогенизатор серии TRGA и потом начнем медленно охлаждать на улице.

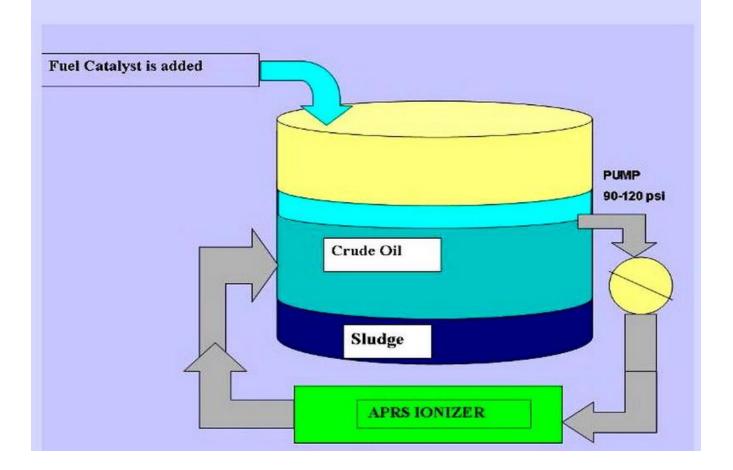
Смесь прозрачна - пальмовое масло не кристаллизуется при + 25 и +19 Цельсия

И даже при +15 пальмовое масло НЕ кристаллизуется ...

Кристаллизация начинается при +10 Цельсия.

При этом осадок – сохраняет свою подвижность и не образует комки.

Мы делали такие же опыты растворяя пальмовое масло в дизельном топливе – результат аналогичный.


- 7.2. Доказательства качества и надежности работы нашего оборудования.
- снижение количества и размеров механических примесей, вязкости и температуры застывания нефтепродуктов www.energy-saving-technology.com/foto/ship/m11.jpg www.afuelsystems.com/ru/trga/s135.html www.afuelsystems.com/ru/trga/s143.html
- многолетняя работа с мазутами <u>www.afuelsystems.com/ru/trga/s240.html</u> и нефтешламом <u>www.afuelsystems.com/ru/trga/s240.html</u> <u>www.afuelsystems.com/arhdoc/trga_otziv_sp.pdf</u> <u>www.afuelsystems.com/ru/trga/s214.html</u> <u>www.afuelsystems.com/ru/trga/s214.html</u>

И первичное коммерческое предложение - www.afuelsystems.com/ru/trga/s247.html

7.3. **А что за бугром?** А за бугром ребята не спят – активно читают наш сайт и предлагают « как свое », фото ниже. Но это не страшно. Есть множество тонких деталей и в мире огромное количество нефтяных резервуаров. Обращайтесь.

Андрей Рубан / Viber +380505183898 / mail <u>5183898@ukr.net</u>

Reduces Time	 Tank cleaning reduces absolute minimum down time. Overall shorter maintenance times.
Environmentally Friendly	Nearly 100% recovery of hydrocarbons. Minimum waste disposal necessary Minimum emission of hydrocarbons to atmosphere Lower consumption of water, electricity and air No discharge of waste petroleum sludge's to open retaining ponds
Nore Effective Cleaning	 Unique APRS Technology covers complete interior tank surface areas Liquefies sludge & destroys bacteria. Re-circulation of cleaning media, sludge and crude during process Integrates and improves tank contents
Safe Working Environment	No personnel inside tank during cleaning process Non-man entry system No risks of explosion or other labor hazards Minimal health and safety risks to staff
Lower Costs	Overall tank cleaning costs reduced. All Sludge is recovered as high-quality crude!!

