for technical experts

Boiler and ship fuel. Systems to improve HFO quality and lower operating costs.

fuel savings, emissions reduction, competitive advantage for tank farms and bunkering companies.

> all photos and diagrams in this presentation (except for the photo on page N50 of this presentation) we get on our equipment and from our customers. <u>www.energy-saving-technology.com</u>

Why am I reading this presentation?

1. I am seeking new equipment for heavy fuel savings, reliable, simple, proven and low-cost in operation .

2. I'm looking for **equipment and projects that quickly pays for itself**, and work for a long time.

3. I work with consumers of liquid fuel – boiler or bunkering company and using additives.
I want to improve result or reduce quantity of additives.
Fuel is too poor and demand more and more additives and it not solve my problem. I want the best quality.

4. I am a supplier of fuel and want to bind my key clients.

5. I know a lot of boiler-houses that have **constant problems with the HFO burning**. Smoke, sludge, permanent sticking soot and unburned coke on heat exchangers, boilers stopping, cleaning and repair of equipment ...

I want to offer a good solution and make money.

For business...

1. I am the owner of bunkering company and want to improve my product quality.

- remove clots and fuel stratification for get a homogeneous fuel;
- dispersing all solids (resins, asphaltenes paraffin);
- reduce the amount and size of solids and coke;
- to reduce the viscosity of the final product;
- to reduce the freezing point and filterability limit temperature;
- increased caloric fuel. (without using additives or with a minimum volume of additives)

2. I want to <u>reduce expenses for manufacturing</u> fuel for ship or boiler by :

- reduce quantity diesel / boiler fuel for blending ;
- reduce volume of using additives or increase their efficiency;
- reduce the cost for heating fuel, and recycling condensate water, slurry residues in tanks;
- minimize the environmental damage from my enterprise.

3. I am the owner oil-fired boilers and I want to **reduce cost for fuel and sludge utilization**.

- **4. I am not the owner** of bunkering (tank farm / boiler house) companies, but I want **offer to my boss right way to reduce manufacturing costs and increase our sales.**
- 5. I am interested in a reliable, simple, proven and low-cost in operation equipment.

Our technology for refinery, industrial boilers, furnaces, heat power plant, energy ship provides:

1. **Saving HFO**. Eliminate corrosion processes, smoke, smell, reduce CO, SOx, watered oil sludge from storage, transportation, tank washing, clogging of heat exchangers, keep maximum boiler efficiency, increase repairs period. We solve it successfully and everywhere.

2. Utilization liquid oil sludge at oil (fuel) terminals, tank farms and seaports by turning into boiler fuel component with safe burning in boiler (without expensive chemical and bio-purification). Our typical task are solved successfully elsewhere.

3. Utilization sediments in natural oil (in the tanks of its temporary storage), by conversion one into an oil component. <u>New topic</u>.

4. Manufacture of **winter diesel fuel oil** from summer DFO, in stream, without its preliminary heating. Our **typical task** are solved successfully elsewhere.

5. **Increase extraction of light fractions from crude oil**. Average range increasing (gasoline or diesel, depending from crude oil type and technological regime) 3% - 7%. <u>Detailed technology</u>.

6. **Saving of ship fuel** - shipboard installations for improving fuel properties, saving fuel, reducing oil sludge and increasing engine's life. (the same for high power industrial generators). <u>Detailed technology</u> with the necessary tests and analyzes.

Industrial TEST RESULTS (our systems) prove 2.44 - 4.1% fuel economy for industrial boiler, oven and on some types of ship engines

and industrial diesel generators.

154 successful projects 2007 -2017, in Russia, Ukraine, Belarus, Syria, Kazakhstan, Croatia, Serbia, Belgium, Guinea, Jamaica ...

The same fuel, but more caloric and more energy.

The same boiler, but lower specific fuel consumption.

Economic effect \$60,000 - \$600,000 for one boiler* per year. (*depending on capacity from 1 up to 10 tons p/h)

<u>**Objects</u></u> - industrial boilers and furnaces, cement plants, mines, dairy and sugar factories, power stations, refinery, heat power plant, energy ship...</u>**

The main difference - high reliability, long-term effective work with heavy fuels, high quality processing fuels with a viscosity up to 1200 cSt ..

Possibility of installation and maintenance works by customer staff, real experience of successful operation for **8** years, tests, analyzes, **certificates for use in Ukraine, EU and Russia.**

Works on the principle – - install and forget.

TRGA init, for power or boiler station. Working from 01.09.2009 to 10.02.2017.

For HFO economy, reduction of harmful emissions, recycling condensate water and sludge, increasing boiler efficiency. www.afuelsystems.com Work time is 3-4 years. Some models work 8 years. Warranty - 1-2 years Payback time- less than one year

We offer to You to increase your income on the basis of our equipment and practical knowledge.

Burning in industrial boiler - before, after, always.

In bunker fuel manufacture always use additives (chemicals or light fuel) *.

This mixing problem is usually solved by using a pump or a static mixer at best ... Below - construction / operation principle of Spanish static mixer ..

It useful for mixing coffee with sugar, but not grinding resins, asphaltenes, ash, water lenses and mechanical impurity ... It works good only in the picture.

Existing devices for production multicomponent or bunker fuels require pre-filtering, have low productivity, are not efficient, bulky, require a lot of energy, they are not reliable and do not disintegrate tar, asphaltenes, paraffin and do not change the viscosity of the fuel without additives.

We offer our devices that reduce HFO viscosity, without additives, by 10-15% and require less energy, less additives and diluents if they are needed.

With our system You can grinding of resin, asphaltenes, paraffin and coke particles in the fuel allows additive* get to each molecule of fuel.

Quantity of required additives* - will be reduced or will be increases final product quality.

<u>This effect is not</u> achievable in the static **blade** mixer.

Term additive* - it is chemical fuel additive or other fuel component.

Fuel processed by our system – burning better, waste and smoke are less, price for purchase/exploitation is lower.

This is our significant competitive advantage.

Examples of the fuel processing by our system - visual effects

Examples of processing sludge from open storage by our system. Test - oil sludge visually before and after treatment.

Examples of processing sludge open storage by our system. Test - oil sludge burning before and after treatment.

Examples of low-viscosity marine fuel processing by our system. Left - original fuel. Right - after treatment.

Examples of heavy fuel processing by PSSF system - M100 black oil, coal tar

Examples of the fuel processing by our system - coal tar, hydrocarbon fuel

Two civilizations - the result of one - fuel, after our systems, burns better.

rbr-acon IN	rbr-ecom JN
Datum Cas	Datum Cas 28.11.08 16:36:11
26. 11. 08 15: 47: 49	Analiza Plina
Ursta soriva before Kurilno olje CO T-zraka 22 °C T-plina 225 °C 02 4.8 % CO 113ms/m³ NO 352ms/m³ NOx 565ms/m³ CO2 11.9 % Eta 88.3 % Izsube 11.7 % Lambda 1.30 Toc. ros. 46 °C	Ursta soriva Kurilno olje T-zraka 20 °C T-plina 221 °C 02 4.9 % CO 76ms/m ³ NOX 361ms/m ³ NOX 582ms/m ³ CO2 11.8 % Eta 88.3 % Izsube 11.7 % Lambda 1.30 Toc.ros. 46 °C
TOPLANE d.o.o. RIJEKA Kozala 87 Tel.: 051 54 50 60 Fax.: 051 50 03 08	TOPLANE d.o.o. RIJEKA Kozala 87 Tel.: 051 54 50 60 Fax.: 051 50 03 08

It was our first test in Croatia in November 2008 (fuel type - light heating oil, ideal of purity, 25 kilometers to the refinery)

no additives only mechanical processing black oil in Syria. burning (up to black oil TRGA in Syria, processing unit), burning a flash time of the (after TRGA match 14 seconds. processing unit), burns slowly, a a flash time from small flame and the match 4 sec. lower the flame burns temperature brightly and large. 17/01/2012

www.energy-saving-technology.com

Two civilizations – **the result of one** fuel, after our systems, burns better.

Less smoke, less carbon, less corrosion, less sludge, less slag, less harmful emissions (Benzopyrene, CO, SO2, Nox) less costs to recycle fuel residues and oily water – it is our standard results for the past 10 years.

Суточные объемы производства перегретого пара и потребления мазута на котле №5

DEN/service technique et production Suivi rendement activateur de mazout

Показатели	до устано	вки гомо	генизатор	a TRGA-2-15G	Показатели после установки гомогенизатора TRGA-							
		CHAUD	-5 / коте	n N25		CHAUD-5 / котел №5						
Date / дата	mazout / мазут		vapeur/	cons.spécifique / удельный	Date / дата	mazout / мазут		vapeur/	cons.spécif ue /			
111	(m3)	(t)	(t)	расход мазута (кг/t)		(m3)	(t)	(t)	расход			
01.08.2010	206	198,8	2739	72,578	01.09.2010							
02.08.2010	205	197,8	2733	72,384	02.09.2010	84	81,1	1006	80,577			
03.08.2010	206	198,8	2743	72,472	03.09.2010	207	199,8	2866	69,698			
04.08.2010	206	198,8	2748	72,340	04.09.2010	211	203,6	2904	70,115			
05.08.2010	205	197,8	2708	73,052	05.09.2010	214	206,5	2939	70,265			
06.08.2010	205	197,8	2711	72,971	06.09.2010	221	213,3	2954	72,195			
07.08.2010	208	200,7	2752	72,936	07.09.2010	221	213,3	3025	70,501			
08.08.2010	212	204,6	2734	74,828	08.09.2010	220	212,3	3016	70,391			
09.08.2010	228	220,0	2848	77,254	09.09.2010	219	211,3	3003	70,375			
10.08.2010	214	206,5	2780	74,284	10.09.2010	219	211,3	3017	70,048			
11.08.2010	212	204,6	2730	74,938	11.09.2010	217	209,4	2997	69,872			
12.08.2010	203	195,9	2623	74,684	12.09.2010	220	212,3	3014	70,438			
13.08.2010	205	197,8	2692	73,486	13.09.2010	221	213,3	3030	70,384			
14.08.2010	211	203,6	2780	73,243	14.09.2010	221	213,3	3026	70,478			
15.08.2010	208	200,7	2742	73,202	15.09.2010	219	211,3	2998	70,492			
16.08.2010	197	190,1	2480	76,655	16.09.2010	209	201,7	2784	72,444			
17.08.2010	205	197,8	2675	73,953	17.09.2010	145	139,9	1957	71,500			
18.08.2010	214	206,5	2782	74,231	18.09.2010	Anani	MUSS OCT					
19.08.2010	216	208,4	2824	73,810	19.09.2010	прари	INHAN OUT		11/18 115 58			
20.08.2010	198	191,1	2594	73,658	20.09.2010	поры	ва экранн	нои трубь	а заднего			
21.08.2010	216	208,4	2868	72,678	21.09.2010		экра	на топки				
22.08.2010	215	207,5	2834	73,209	22.09.2010	172	166,0	2270	73,119			
23.08.2010	214	206,5	2821	73,205	23.09.2010	201	194,0	2778	69,822			
24.08.2010	148	142,8	1947	73,354	24.09.2010	202	194,9	2798	69,668			
25.08.2010	-				25.09.2010	200	193,0	2764	69,826			
26.08.2010					26.09.2010	199	192,0	2733	70,265			
27.08.2010					27.09.2010	200	193,0	2714	71,113			
28.08.2010	0	становка	я котла и	монтаж	28.09.2010	201	194,0	2749	70,558			
29.08.2010		FOMO	огенизато	ра	29.09.2010	203	195,9	2684	72,986			
30.08.2010					30.09.2010	200	193,0	2703	71,402			
31.08.2010												
Aois /месяц	4957,0	4783,5	64888,0	73,719	Mois /месяц	4242,0	4093,5	57879,0	70,726			

ate / mazout / мазут vapeur/ cons.spécif ата (m3) (t) (t) (t) vapeur/ удельный ор.2010 (m3) (t) (t) (t) расход 09.2010 84 81,1 1006 80,577 09.2010 207 199,8 2866 69,698 09.2010 211 203,6 2904 70,115 09.2010 214 206,5 2939 70,265 09.2010 221 213,3 2954 72,195 09.2010 221 213,3 3025 70,501 09.2010 220 212,3 3016 70,391 09.2010 219 211,3 3003 70,375
(m3) (t) (t) удельный расход 09.2010 (t) (t) расход 09.2010 84 81,1 1006 80,577 09.2010 207 199,8 2866 69,698 09.2010 211 203,6 2904 70,115 09.2010 214 206,5 2939 70,265 09.2010 221 213,3 2954 72,195 09.2010 221 213,3 3015 70,501 09.2010 220 212,3 3016 70,391 09.2010 219 211,3 3003 70,375
09.2010 09.2010 84 81,1 1006 80,577 09.2010 207 199,8 2866 69,698 09.2010 211 203,6 2904 70,115 09.2010 214 206,5 2939 70,265 09.2010 221 213,3 2954 72,195 09.2010 221 213,3 3025 70,501 09.2010 220 212,3 3016 70,391 09.2010 219 211,3 3003 70,375
09.2010 84 81,1 1006 80,577 09.2010 207 199,8 2866 69,698 09.2010 211 203,6 2904 70,115 09.2010 214 206,5 2939 70,265 09.2010 221 213,3 2954 72,195 09.2010 221 213,3 3025 70,501 09.2010 220 212,3 3016 70,391 09.2010 219 211,3 3003 70,375
09.2010 207 199,8 2866 69,698 09.2010 211 203,6 2904 70,115 09.2010 214 206,5 2939 70,265 09.2010 221 213,3 2954 72,195 09.2010 221 213,3 3025 70,501 09.2010 221 213,3 3016 70,391 09.2010 220 212,3 3016 70,391 09.2010 219 211,3 3003 70,375
09.2010 211 203,6 2904 70,115 09.2010 214 206,5 2939 70,265 09.2010 221 213,3 2954 72,195 09.2010 221 213,3 3025 70,501 09.2010 221 213,3 3015 70,501 09.2010 220 212,3 3016 70,391 09.2010 219 211,3 3003 70,375
09.2010 214 206,5 2939 70,265 09.2010 221 213,3 2954 72,195 09.2010 221 213,3 3025 70,501 09.2010 221 213,3 3025 70,501 09.2010 220 212,3 3016 70,391 09.2010 219 211,3 3003 70,375
09.2010 221 213,3 2954 72,195 09.2010 221 213,3 3025 70,501 09.2010 220 212,3 3016 70,391 09.2010 219 211,3 3003 70,375
09.2010 221 213,3 3025 70,501 09.2010 220 212,3 3016 70,391 09.2010 219 211,3 3003 70,375
09.2010 220 212,3 3016 70,391 09.2010 219 211,3 3003 70.375
09.2010 219 211,3 3003 70.375
09.2010 219 211,3 3017 70,048
09.2010 217 209,4 2997 69,872
09.2010 220 212,3 3014 70,438
09.2010 221 213,3 3030 70,384
09.2010 221 213,3 3026 70,478
09.2010 219 211,3 2998 70,492
09.2010 209 201,7 2784 72,444
09.2010 145 139,9 1957 71,500
09.2010 Аварийная остановка котоа на за
09.2010
09.2010 порыва экранной трубы заднего
09.2010 экрана топки
09.2010 172 166,0 2270 73,119
09.2010 201 194,0 2778 69,822
09.2010 202 194,9 2798 69.668
09.2010 200 193,0 2764 69.826
09.2010 199 192,0 2733 70.265
09.2010 200 193.0 2714 71.113
09.2010 201 194,0 2749 70.558

2,994 Kr/t

4,1 %

Before and after

Burning black oil after processing

www.afuelsystems.com

Burning a standard fuel oil

Qualitative changes in the fuel before and after treatment comparison table - increased caloric reduction in viscosity, partial binding of sulfur

And some results that require additional research to determine borders of effect of, but can be explained. This is the sulfur content.

The first results summary:

	sulfur content	viscosity (cSt)	Calorific (BTU/lb)	density
Samp. No. 3 - original fuel	0.531	94.33	8,875	0.9822
Samp. No. 2 - original fuel processing by TRGA gomogeniztore 1 times.	0.458	77.84	10,786	0.9722
Percentage comparison	(-13.74%)	(-17.48%)	(+21.53%)	(-1%)
Samp. No. 1 - the starting fuel (HFO) + Diesel 10% + processing by TRGA homogenizer	0.3	9 Intertek	15.179	0.9103
	*	Customer AMERICAN Yes	TEST REPORT	(Aprilagina)

Look analyzes below ...

TEST REPORT		
Customos: AMERICAN TECHNOLOGIES INC. Advesse: 40 Idea con Notortough 55 Bry Addoes Hills Mandationing Usy Requisitor: Mr. Notherto Gyla Jr.	Reference Sample No. Outo Relatived Date Relatived	0330-0616-PLM 204-005-0010 Anr 8, 2013 Anr 7 w 8, 2019
Sample Description As Declared Product: Ender	Testes Ferraria	Are Larse

филиала ОАО «РЖД»

Адрес: 680032, г. Хабаровск, проспект 60 лет Октября.

Протокол № 2913 Результатов анализа мазута 90 установа

He car

1

Ne Норма по ТУ п'n Наименование показателя Марка мазута Фактически Ист Ф5 Φ12 40 100 Вязкость кинематическая при 50 °С, сСт. не более 36.2 89.0 --Вязкость кинематическая при LOC. 80 °C, MM²v, He Gonee 1. 59,0 118,0 -Вязкость кинематическая при 14,45 100 OC, MM²\c, He Gonce 50,0 2. Зольность. %, не более 0,04 0,05 . -QQ8 го - малозольный 0.05 0,10 0,12 0.14 - SOMPHER Массовая доля механических Q596 3. примесей .%, не более FOC 0,10 0,12 0.5 1.0 Массовая доля воды, %, не 2,8 0.3 4. более 0,3 1.0 1.0 **FOC** Содержание ouic 5. водорастворимых кислот и FOC Отсутствие щелочей Массовая доля серы, %, не 1,98 ГO 6. более 0.6 3.5 2,0 3.5 Температура вспыники, 153 7. определяемая в открытом TOC 90 110 тигле, °С, не янже Температура вспышки в 8. закрытом тнгле, ⁰C, не ниже 80 90 FOC 9. Температура застывания, ОС, не выше - 5 -8 25 roc 10 Плотность при 20°C, rich'. Не норыкрустся, 10. 2925 ГO ие более определение 0.955 0.966 обязательно 11. Теплота сгорания, Джиг, не 41454 41454 39900 39900 39090 FOC MCHUC www.afuelsystems.com

Заключение: мазут марки 100 ГОСТ10585-99

QUINTING ON O ((PALD) Адрес: 680032, г. Хабаровск, проспект 60 лет Октября.

Протокол № 2.914

Результатов анализа мазута иосле. усконован

Ne			Норы	а по ТУ]	Метод	
пуп	Наименование показателя		Марк	а мазута	1	Фактически	Испытани
		Φ5	Φ12	40	100	1	2
	Вязкость книнематическая при 50 °C, сСт, не более	36,2	89,0	-	-		
1.	Вязкость кинематическая при 80 °С, мы ² ю, не более		-	59,0	118,0		FOCT 33
	Вязкость кинематическая при 100 ОС, мм ² с, не более		Ι.		50,0	15,20	
2.	Зольность, %, не более			0,04	0,05		-
	- МАЛОЗОЛЬНЫЙ - ЗОЛЬНЫЙ	0,05	0,10	0,12	0,14	8081	FOCT 1461
3.	Массовая доля механических примесей ,%, не более	0,10	0,12	0,5	1.0	8574	FOCT 6370
4.	Массовая доля воды, %, не более	0,3	0,3	1,0	1,0	69	FOCT 2477
5.	Содержание водорастворимых кислот н щелочей		Отсу	тствие		evec	FOCT 6307
6.	Массовая доля серы ,% , не более	2.0	0.6	3.5	3.5	1.96	FOCT 1437
7.	Температура вспышки, определяемая в открытом тигле, ⁰ С, не нюке	-		90	110	155	ГОСТ4333
8.	Температура вспышки в закрытом тнгле, ^о С, не нюке	80	90		1		FOCT 6356
9.	Температура застывания, ОС, не выше	-5	-8	10	25		FOCT 20287
10.	Плотность при 20 ⁰ С , гісм ³ , не более	0,955	0,966	Не воря опред обяза	авруется, клоние тельно	9 926	FOCT 3960
11.	Теплота сгорания, Джікг, не	41454	41454	39900	39900	39050	FOCT 21261

Effect of increased caloric content of fuel oil is confirmed by analysis of Russian Railways in 2013 - the original HFO - water - 2.8%, processed HFO - 6.9%, but the calorie content is almost equal. Recalculation shows an increase of 4.29% in the caloric content.

How it works

Optimization HFO burning in Syria...

- 1. Burning standard black oil
- 2. Burning black oil after processing
- 3. Burning black oil with water, after processing

Optimization burning HFO, Syria - 3 months operation - clean surfaces, no corrosion (15% water in black oil)

Optimization burning HFO, Odessa, UA - 3 years operation - clean surfaces, no smoke, no corrosion (8% water in black oil), incineration own and port sludge. 2 boilers RILEY UNION Holman Boiler Works Inc. made in USA 1994

1. Fuel oil boiler economizer after 11 months of work (works on <u>mix</u> of heavy fuel oil and sludge). 2. "<u>mix fuel</u>" burns completely after treatment, leaving a dry ash ...

NO ash

Equipment reliability.

Our system **tested** practically in Russia, Ukraine, Syria, Belarus, Guinea, Jamaica, Croatia, **in continuous working within 2-5 years** with heavy fuel oil in low filtration, high viscosity and high content of abrasive particles, resins, asphaltenes, other suspensions.

Some other... similar equipment (made in US and Germany) breaks down in 3-4 months and can not be serviced by the customer.

On this quality HFO, our systems work 12 months without clogging. (Aluminum Plant in Guinea)

N⁰	TRGA model of homogenizer	flow of black oilTRGAtotal amount of solidsmodel oftotal amount of solids with a reducthomogenizer(pre-filtering and recycling)							
T.		max. and average p/h.	per 1 year	per 2 years	per 5 year				
1	TRGA-3G-05	6, 4	28 800 288 tons 57.6	86 400 864 tons 172.8	144 000 1 440 tons 288				
2	TRGA-3G-08	9, 7	50 400 504 tons 100	151 200 1 512 tons 302	252 000 2 520 tons 504				
5	TRGA-3G-10	11, 8	57 600 578 tons 115	172 800 1 728 tons 345	288 000 2 880 tons 576				
	TRGA-3G-15	16, 12	86 400 864 tons 172	259 200 2 592 tons 518	432 000 4 320 tons 864				
	TRGA-3G-20	21, 18	129 600 1 296 tons 259	388 800 3 888 tons 777	648 000 6 480 tons 1 296				
5	TRGA-3G-30	32, 26	187 200 1 872 tons 374	561 600 5 616 tons 1 132	936 000 9 360 tons 1 872				
7	TRGA-3G-40	43, 36	259 200 2 592 tons 518	777 600 7 776 tons <mark>1 555</mark>	1 296 000 12 960 tons 2 592				

1. Safety of operation. The average operating time for the boiler - 10 months per year.

for comparison open top wagon volume is 120 m. cub., lifting capacity is 60 tons.

how much solids passes through the our fuel system TRGA for 1 year wagon.

how long our systems works in Russia, Ukraine, Kazakhstan?

from 2 to 7 years and we have a lot of evidence. Our industrial TEST RESULTS is 2.44 - 4.1% fuel economy for industrial boiler, oven and on some types of ship engines and industrial diesel generators.

Boilers and power plants not only on land - but also **on the sea**, **on oil rigs on power ships, on ships with boiler power systems...**

The same fuel, but more caloric and more energy.

The same objects, but lower specific fuel consumption and maintenance.

Works on the principle – - install and forget.

But it works not only for open fire!

Problem to improve HFO quality for ships engines and diesel power plants of high power.

Problems with HFO the same - not complete burning, smoke, harmful emissions, equipment wear, slurry disposal, possibility of using cheaper fuel and reduction of fuel costs.

diesel generator exhaust (standard automotive diesel fuel) - 20 minutes of work

Выхлоп стандартного дизельного топлива

www.afuelsystems.com

diesel generator exhaust (automotive diesel after treatment with a mechanical activator TRGA) - 20 minutes of work

Выхлоп <u>НЕстандартного</u> дизельного топлива

www.afuelsystems.com

выхлоп дизельного генератора (стандартное автомобильное диз. топливо) - 20 минут работы выхлоп дизельного генератора (автомобильное дизельное топливо после обработки механическим активатором ТРГА) - 20 минут работы

Our first test

on diesel generators with standard, light automotive diesel fuel.

Compare please :

- amount of unburned particles

- completeness of combustion in engine.

A simple test - two sheets of paper near the exhaust pipe

Next test processing marine fuel IFO-180 – before and after.

Reducing quantity and size of the solid particles, tar and other impurities in the fuel provides:

- 1. more efficient combustion and reduced specific fuel consumption;
- 2. unburned residue deposits in the engine, increases average efficiency power units between repairs or cleaning;
- 3. Reduces smoke and emissions.

Processed fuel on a laboratory filter

Sample 0 - weight of particles on the filter is 9.8 mg/kg (standard HFO)

Sample 2-5 - weight of
particles on the filter is
7.7 and 6.1 mg/kg
(HFO after processing)

Reduced to "- 38%" The official test doc. from INA, Zagreb, Croatia

SEM mikrofotografija uzorka "0", povećanje 500x

SEM mikrofotografija uzorka "5", povećanje 500x

1. Left - laboratory filter is completely clogged by fuel residues from original ship fuel RME IFO 180. 2. Right – the same filter, but fuel after treatment 3 times by our system. It is clean, you can see the filter's structure only and single particles .

ЗАГРЯЗНЕННОСТИ ДИЗЕЛЬНОГ топлива на срок службы плунжерной пары дизеля Comporting to HAL

																				срок службы.	
Дизел	ьно	e	TO	л	ив	0	до		фи	льт	rpa	щ	អ	•	•	•	•	•	•	100	
То же		no pa:	сле 15т	pa	фи. ци	пь' в,	гра мк	ЦР M	H	90	pe	3	фя	ль	тр	(TO	н-	120	
:24	1.													•				•		190	
19																-	٠	•	٠	350	
13								٠			10	20	- 50	. •	•	••	٠	•	•	850	
5-7						1.0										10		٠		000	

ВЛИЯНИЕ ЗАГРЯЗНЕННОСТИ МАСЛА НА СКОРОСТЬ ИЗНОСА ГИЛЬЗЫ И ВЕРХНЕГО ПОРШНЕВОГО КОЛЬЦА

	1	Скорость износа						
Размер частиц. мкм	Содержание механи- ческих примесей, %	раднальной гильзы, мкм/ч	поршневого кольца, мг/ч					
До 100 • 50 • 30	0,027 0,1 0,176	2.1 0.35	3,1 6 8					

Киселев М. М.

K 44 Топливно-смазочные материалы для строительных машин: Справочник. — М.: Стройиздат, 1988. — 271 с.: ил.

ISBN 5-274-00040-1

Приведены основные свойства топливных в смазочных матерналов, причины их изменения, а также сведения о применении в строительных машинах. Рассмотрены методы восстановления и контроля качества нефтепродуктов. Изложены вопросы современного обеспечения строительных топливом и смазочными материалами. Даны сведения о правилах хранения, учета и нормирования расхода топлива и смазочных материалов.

Для инженерно-технических работников проектных в стронтельных организаций.

Неэтидирова

Этилировани

Стандар тное

содержани

8.15. I

Дизельное то Автомобильн Пластически ISBN 5-274-00040-1

Санртстание

Handbook "fuels and lubricants", USSR publication

" influence of polluted of diesel fuel on the lifetime of the plunger pump of diesel engine "

Service life of the diesel engine *in the automotive diesel fuel:*

1. unfiltered fuel = 100%2. after filtering (or crushing particles) up to 5-7 microns. = 850%

The degree of particle size reduction our fuel system = 4-5 microns and less.

Стройиздат, 1988

BBK 38.6-5

All traditional system of fuel preparation have common drawbacks:

- After filtration (separation) of fuel, part high molecular fuel moves to sludge tank;
- It does not provide complete removal of water;
- Separation systems are very expensive to purchase and maintain.

type of equipment	dewatering	removal of solid particles in the fuel	loss of fuel	
filter	no (water from the fuel is not removed)	satisfactory	moderate	
separator	good, but not ecselent (the limit is caused by the fuel density)	good but not complete	large, up to 3%	
PSSF system	no (water dispersity up to 3-5 microns)	good - dispersity up to 3-5 microns	<mark>absent</mark>	

Our PSSF system - work continuously and without repair 1-2 years, converts 95% of sludge into fuel and totally not destroy the ship or diesel generator engine.

Our system - totally safe for diesel engine (proved by supervision industrial diesel generator working during the 3 years). **Our system provides other effects.**

1. The uniform distribution of the additive* in the fuel – it reduces degradation of the fuel system and reduces piston wear.

Why ? - Increased concentration of additive* in the fuel leads to saturation by hydrogen surfaces of high pressure pump/pistons and it sharply increases brittleness and wear of these surfaces.

2. Minor residual water in the fuel is converted into a stable fuel emulsion which accelerates the combustion process in the engine or in ship's or energy boiler.

Why? - It is not the subject of this presentation, it is shown on special test stands.

3. Dispersing of solid inclusions, not only reduces the degradation of fuel system and reduces wear on piston, but also increases the caloric value of the fuel due to its complete combustion.

Why ? - Fine particles of fuel burned completely, and do not destroy the friction surfaces. This is proven by the classical Soviet technical literature on the example of the automotive diesel fuel.

Before ...

After ...

Test - our ship-board system for processing fuel on ships without additives. <u>**It worked**</u> continuously, without maintenance and safety for the engine - 1.5 years. <u>**Result:**</u> reduction viscosity and ash content, pour point, size dispersion of solid particles, carbon residue, reduction amount of sludge ("-95%"), removing clots. Fuel economy 4%. Reduced smoke and harmful emissions. Conducted by a certified laboratory in Slovenia.

Analysis of the documents - modify the properties of heavy hydrocarbon fuels

shipboard fuel IFO-180 (INA HR)	N		formal standart	original sample	1	2	3	4	comment
density at 15 °C	1	kg/m3	<= 991	947.6	945.7	945.7	948.1	949.6	agree
kinematic viscosity at 50 °C	2	mm2/s	<= 180	138.5	<u>117.8</u>	117.6	129.1	136	super
aromaticity index	3	(CCAI)	<= 860	820	820	820	821	822	agree
total sulfur content	4	% m/m	<= 4.5	1.59	1.56	1.57	1.54	1.49	agree
flash-point	5	°C	>= 60	92.0	94	94	> 100	> 100	*
amount of sediment	6	% m/m	<= 0.10	0.02	0.05	0.04	0.03	0.04	**
amount of coke residue	7	% m/m	<= 15.0	14.06	8.53	8.18	<u>8.19</u>	7.63	super
flow point	8	°C	<= 30	+30	+24	+24	+21	+24	super
amount of water	9	% v/v	<= 0.50	0.1	0.05	0.05	3	<u>5.6</u>	agree
amount of ash	10	% m/m	<= 0.07	0.04	0.04	0.03	0.04	0.04	agree
amount of vanadium	11	mg/kg	<= 200	125	122	<u>120</u>	115	<u>112</u>	super
amount of sodium	12	mg/kg	<= 50	4.93	7.25	7.85	5.72	5.34	***
amount of Al + Si	13	mg/kg	<= 50	5	5	5	5	5	agree
energy value	14	MJ/kg		-	41.02	41.02	39.7	38.88	agree
(4))) ⁴			standart	no add	no add	no add	+3% w	+6% w	

identical ships with the same fuel. One ship with our system. The overall results of the use of ship's modules TRGA testing on ro-ro ship Larkspur "from 19 to 22 08. 2012

st.	Operation on the standard fuel	Using module TRGA only on the buffer tank	Using module TRGA only on the settling tank	Using module TRGA on the buffer tank and on the settling tank
	The	e main observed ef	fects	
Flue gas temperature St. (C)	325 326 337	356 356 357	353 347 353	368 370 370
Level CO	100%	- 3.8 - 6.4 % -5.27 - 6%	-6.47 - 10.39%	<u>-10 - 14.97 %</u> -12.34 - 13.67
Visual amount of smoke length in meters of water followed	100% at startup – a lot of smoke during the driving 30-80 meters	at startup – less for 30% during the driving 5-40 meters	at startup - less for 40% during the driving 5 - 10 meters	at startup – less for 30% during the driving 5 - 20 meters
The amount of fuel sludge from the separator	0.692 tonnes per day Of which the fuek is 415 kg	0.692 tonnes per day Of which the fuel is 415 kg	0	0
	1	2	3	4

Additional effects of the installation of ship modules TRGA

- 1. Additional heating fuel. TRGA modul provides heating fuel in a buffer tank on the temperature of 85-90 degrees, what reduces the viscosity of the fuel, using fuel or high binding in the case of poor fuel heaters lining the resin, which is the build-up. TRGA module provides heating fuel in settling tank so that the fuel is heated to 5 ° C in a streaming through the module.
- 2. Reducing the amount and size of solid particles in the fuel directly affects the speed and reduce the amount of fuel sludge to collection tanks for fuel mud tank and, in addition to direct fuel saving, provides cost generated by the fuel acquisition sludge by the port services.
- 3. Reducing the amount and size of solid particles in the fuel has a direct impact on the reduction of wear separator and saving in the cost of its repair and maintenance.

Reducing the amount and size of solid particles in the fuel has an indirect impact on reducing pollution settling tank and the costs incurred in cleaning.

5. Using a modul TRGA back to the **buffer tank** provides a softer transition from a heavy fuel engine and vice versa, which, in addition to reducing the heat load allow to start the transition process in less fuel earlier, which also saves on diesel.

Reliable operation of modul TRGA

Module TRGA on the buffer tank has worked continuously from 28. 11. 2011 to 15. 8. 2012, which means for 9 months. TRGA module did not require continuous monitoring or any maintenance. TRGA module did not require any cleaning, adjustment, or replacement of any parts or regulation. TRGA module was turned off before testing in August 2012, and after the test is still working. Reviewof TRGA module during testing showed that the module is in an excellent and perfect mechanical condition and has no traces of wear.

Module TRGA in a settling tank has worked continuously from 19. 8. 2011 to 18. 10. 2012. The module did not require continuous monitoring or any maintenance. The TRGA module did not require cleaning, adjustment, replacement of any parts or regulation.

Marine Company Transeuropa Shipping Lines d.o.o. (Transeuropa Ferries) Koper Slovenija www.transeuropaferries.com Direktor – ing. Rihard Stergulc

fuel purity before and after

official resume after the test.

Photography

- visual changes in smoke before and after switching on our system on the ship

(Oostende - Ramsgate Aug. 2012)

www.energy-saving-technology.com

Channel La Manche - full speed and full load

19/08/2012 08:09

19/08/2012 11:37

www.energy-saving-technology.com

Photography

- changes before and after switching on our system.

(Oostende - Ramsgate Aug. 2012)

difference of emissions before and after

main difference from analogues

 Reliable and proven. Works long and does not break. Tested in the work of 10 years and at more than 150 industrial facilities in the condition of different fuels and poor maintenance.
 Works on the principle - set - forget.

- 3. Low weight 10-60 kg, (unlike other 200 kg). It savings in transport and installation costs.
- 4. Can use add equipment pipes, pumps, valves and other from the customer location.
- 5. Low power consumption, work with gear pump. Energy consumption 0.5-1 kWh per 1 t.
- 6. May be install and served by the customer's staff.
- 7. Different models work on heavy and light fuel.
- 8. No moving parts, does not require a supply of electricity and safe.
- 9. Operating data : pressure 2 40 bar, temperature range "-20 +250 " degrees.
- 10. High crushing effect. Working in aggressive fuels coke fuel, jet fuel, and various mixed
- fuels, may be used for blending biodiesel components comprising methanol and alkali.

Our systems work on old and new boilers, furnaces and engines, on the Russian, American, German and Italian power units, light and heavy, high-quality and shocking fuel.

We have made a lot, we can offer a lot too - technologies that have proven its effective for a long operation time. We can share with You our profit, if combine your capabilities and our practical knowledge. He did not turn away from us, we go behind his back

We are looking for new partners.

1. Cooperation under the **agency agreement**. 2. Co-production equipment in your territory.

Although alternative sources of energy, the world liquid fuels, for new and old boilers, furnaces, diesel ship engines and diesel power - enormous. Latin America, Africa, Asia, Russia, and even some production in the US and Canada, can be our customers for a long time. We can show you how it works for specific objects.

Saving fuel on boilers, furnaces and engines.

Recycling sludge and reducing harmful emissions.

award for the best realized project in Ukraine in the field of energy saving in 2009

diploma for the participation in ward for third place at the the exhibition of the latest exhibition of the latest energy energy saving technologies in saving technologies in the the national Chamber of national Chamber of Ukraine Ukraine 2011

diploma for the participation in the exhibition Energy Efficiency, 2011, Ukraine

for creating fuel compositions and nonchemical treatment of hydrocarbons 2012

and the local data in the local data in the

diploma for the participation in

2010, Ukraine

the exhibition Energy Efficiency

2011

certificate Maritime Register of Ukraine on the use TRGA on marine engines and boiler installations,

certificate Martinia Register of Ukraine on the use TRGA on marine engines and baller installations, 2011

Number in the register guality certificate for EU homogenisation TRGA of goods and products inguality of production and operation) in 2011 in the European Union on the device TRGA

Lloyd's Certificate for the right execution of repair and installation work on the ships of any class, Slovenia, 2012

RTN Certificate of the Russian Federation on a series of devices TRGA the right to use TRGA in high risk industrial objects of Russia, Kazakhitan, Belarus 2012

awards, certificates and guarantees

Contact 5183898@ukr.net andrruban@gmail.com

cell +(380)505183898 w.f. +(380)472313396 VIBER +380505183898 WhApp +380505183898 Gogol Str. 405, Cherkassy, Ukraine, 18005.